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1. Introduction

Recent years have seen a deep progress in our understading of the spectrum of maximally

supersymmetric AdS/CFT in four dimensions, namely the scaling dimensions of the N = 4

SYM and the energies for string states of the type IIB on AdS5 × S5 in the planar limit.

On both sides of the correspondence, the problem is basically solved in terms of Thermo-

dynamic Bethe Ansatz equations, which allow the computation of the spectrum of long

states (i.e. the ones with a large U(1) R-charge J ) for any value of the coupling λ. See for

instance [1 – 15].

The gauge theory problem is mapped to a spin chain computation. In the spin chain

language, one considers a finite set of impurities (magnons) propagating with a definite

momentum p along an infinite chain: integrability basically means that multimagnon scat-

tering factorizes into 2 → 2 scatterings and therefore we just need the magnons dispersion

relation and the 2-magnon S matrix to compute the energy of an arbitrary state. Remark-

ably, we now have an explicit expression for the S matrix [14, 15]. The classical string

theory dual of a magnon (called giant magnon) was found in [13]. In this giant magnon

regime the energy E and the spin J are infinite with finite E − J , like in the pp-wave
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limit [1], but the magnon momentum p is finite and fixed, differently from the pp-wave

limit where p is infinitesimal, being J ∼
√
λ→ ∞ with p

√
λ fixed.

A particular limit [8, 16] which interpolates between the pp-wave and the giant magnon

regimes plays an important role. In this “near-flat space” limit, J and λ go to infinity

while p 4
√
λ is kept finite. Maldacena and Swanson [16] showed that the worldsheet sigma

model drastically simplifies in the near-flat space limit, but the S matrix remains non

trivial (differently from the pp-wave limit, where the magnons are free). Interestingly,

the S matrix for the near-flat space sigma model of [16] has been computed up to two

loops [17, 18] and shown to agree with the near-flat space limit of the full S matrix.

Our aim is to extend some of these important results to four dimensional AdS/CFT

dualities with less symmetries. Interesting generalizations of the maximal supersymmetric

duality are based on type IIB on backgrounds of the form AdS5 ×M5, where the internal

M5 is a compact Einstein manifold. In particular, if M5 is Sasaki-Einstein then minimal

supersymmetry is preserved. In the seminal paper [19], the N = 1 gauge theory dual to

type IIB on AdS5×T 1,1 has been found. More recently, infinite families of five dimensional

Einstein-Sasaki spaces have been found: Y p,q [20] and Lp,q,r [21, 22]. Their gauge theory

duals have been constructed respectively in [23] and [24 – 26]. Some of the results obtained

in N = 4 can be extended to these N = 1 theories: for instance, in [27] it has been shown

that the classical string theory limit introduced in [6] exists also for a generic Sasaki-

Einstein manifold and can be qualitatively connected to a gauge theory spin chain.

After [1], the Penrose limit has been studied for the other compactifications of the form

AdS5 ×M5 where the explicit metric is known, namely for the spaces T 1,1 [28 – 30], T p,q

(which are Einstein but not Sasaki) [28], Y p,q and Lp,q,r [31]. When M5 is a Sasaki-Einstein

space, the resulting background is precisely the same one obtained for S5. For T p,q the

limiting background has always a pp-wave form, but some of global symmetries are broken.

In this paper we study the near-flat space limit for strings propagating on AdS5 ×M5,

taking manifolds like T p,q, Y p,q and Lp,q,r as internal five dimensional space M5. Since

the covariant action for the type IIB superstring on AdS5 × M5 is known only when

M5 = S5 [32], we consider only the bosonic sector, namely the Polyakov action. Our result

is that for Sasaki-Einstein M5 the near-flat space sigma model is identical to the one found

for S5 in [16]. We show this explicitly for all the known Sasaki-Einstein metrics. Since the

sigma model of [16] is integrable, this indicates that the four dimensional N = 1 SCFT’s

with a ten dimensional gravity dual possess an integrable subsector.

The paper is organized as follows. In section 2 we study the near-flat space limit for

AdS5 ×T p,q backgrounds, obtaining a two dimensional sigma model similar to the bosonic

sector of the one found for AdS5 × S5 [16]. The special case of T 1,1, the only one which

is stable (in the sense of Breitenlohner-Freedman [33, 34]) and supersymmetric, gives a

limiting sigma model identical to the S5 case. In section 3 we consider the near-flat space

limit for internal Y p,q, recovering again the bosonic sector of the near-flat space sigma model

of type IIB on AdS5 ×S5. Since this situation resembles the one occurring for the Penrose

limit, where different geometries give the same limiting result, in section 4 we introduce

a generalized metric with U(1)3 symmetry and study its Penrose limit (subsection 4.2)

and its near-flat space limit (subsection 4.3). The limiting sigma model is similar to the
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one found for AdS5 × S5, but the global symmetries are reduced in the most general case.

Moreover, we find that the coefficients characterizing the needed field redefinitions are the

same occurring in the coordinate transformations of the Penrose limit.

In appendix A we review the initial steps of the near-flat space limit for AdS5×S5 [16],

while in appendix B we apply the considerations made in section 4 to generalized metrics

with U(1)3 symmetry which include the known cases in the usual coordinates more directly.

We conclude by applying these results also to the special case of AdS5 × Lp,q,r.

2. The near-flat space limit for the T p,q metrics

In this section we construct the near-flat space limit of bosonic strings moving in back-

grounds of the form AdS5×T p,q, studying the Polyakov action and the Virasoro constraints.

As is well known, the bosonic sector of closed strings propagating in a ten dimensional

target space with metric GMN is described by the Polyakov action1

S = − R2

2

∫
dσ0

∫ 2π

0

dσ1

2π

√−γ γabGMN ∂aX
M∂bX

N (2.1)

where γab is the worldsheet metric, playing the role of a Lagrange multiplier. The energy

momentum tensor

Tab = − 4π

R2

1√−γ
δ S

δγab
= GMN ∂aX

M∂bX
N − 1

2
γab γ

cdGMN ∂cX
M∂dX

N (2.2)

is symmetric and traceless, and the equations of motion for the worldsheet metric γab are

Tab = 0. Adopting the conformal gauge γab = ηab = diag(−1, 1) and introducing the

rescaled light-cone worldsheet coordinates σ± as follows [16]

σ0 + σ1 = 2
√
g σ+ , σ0 − σ1 =

σ−

2
√
g
, where g ≡ R2

4π
, (2.3)

the Polyakov action becomes

S = − 2 g

∫
GMN ∂+X

M∂−X
N dσ+dσ− , (2.4)

while the components of the energy momentum tensor read

T−− = GMN ∂−X
M∂−X

N , T++ = GMN ∂+X
M∂+X

N . (2.5)

The ten dimensional target spaces we will consider are of the form AdS5 ×M5, where M5

is a compact manifold, so that their metrics are of the form [36]

ds2 = R2GMN dX
MdXN = ds2AdS5

+ ds2M5 . (2.6)

1We recall that the coupling constant gYM of the gauge theory is related to the radius R of AdS5 by

λ = R4/α′ 2, where the ’t Hooft coupling λ ≡ g2

YMN is kept fixed in the large N limit. If M5 is not S5,

gYM has to be thought as an overall potential coupling, as discussed in detail in the supersymmetric case

in [35, 27].
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The global AdS5 metric reads

ds2AdS5
= R2

(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3

)
, (2.7)

where dΩ2
3 is the metric on S3, which can be written as dΩ2

3 = dδ21 +cos2 δ1 dδ
2
2 +sin2 δ1 dδ

2
3 .

The compact manifolds T p,q are characterized by the metrics [37]

ds2M5 = R2
[
a2(dψ+p cos θ1dφ1+q cos θ2dφ2)

2+b2(dθ2
1+sin2 θ1dφ

2
1)+c

2(dθ2
2 +sin2 θ2dφ

2
2)
]
,

(2.8)

where the coordinate ranges are 0 6 ψ < 4π, 0 6 θi < π, 0 6 φi < 2π. p, q, a2, b2 and c2

are parameters. The Einstein condition determines a2, b2 and c2 in terms of the integers p

and q, but we can keep them unrelated for the moment. In the important special case of

T 1,1 the space is Sasaki-Einstein and the dual CFT is supersymmetric. All the T p,q metrics

admit the isometry group SU(2) × SU(2) × U(1).

We consider the NFS limit around the geodesic sitting at θ1 = θ2 = 0. The same

geodesics was the starting point for the Penrose limit in [28]. Starting from the string

action (2.4) we perform the field redefinitions

t = kt
√
g σ+ +

τ√
g
, ρ =

z√
g
,

ψ = kψ
√
g σ+ +

Kψ χ

K
√
g

− pϕ1 − q ϕ2 , (2.9)

φ1 = kφ1

√
g σ+ +

Kφ1
χ

K
√
g

+ ϕ1 , θ1 =
r1
b
√
g
,

φ2 = kφ2

√
g σ+ +

Kφ2
χ

K
√
g

+ ϕ2 , θ2 =
r2
c
√
g
,

where K = a(Kψ + pKφ1
+ q Kφ2

), the k’s and K’s are constant.

Now we substitute the field redefinitions (2.9) into the string action (2.4) with GMN

given by (2.6) and (2.8), and take the limit g → ∞. The term O(g) in the Lagrangian does

not contribute to the action because it is a total derivative. Instead, the term O(
√
g ) is

proportional to

√
g

{
r21 ∂−ϕ1

(
a2p

2 b2
(
kψ + p kφ1

+ q kφ2

)
− kφ1

)
(2.10)

+ r22 ∂−ϕ2

(
a2q

2 c2
(
kψ + p kφ1

+ q kφ2

)
− kφ2

)}
.

This divergence of the action vanishes provided that

kψ =

(
1 − a2p2

2 b2
− a2q2

2 c2

)
kΨ

a
, kφ1

=
a p

2 b2
kΨ , kφ2

=
a q

2 c2
kΨ . (2.11)

These relations imply for kΨ

kΨ = a (kψ + p kφ1
+ q kφ2

) (2.12)
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for kΨ, which remains a free parameter. Adopting (2.11) into (2.9), we find

lim
g→∞

S = − 2

∫ {
− ∂+τ ∂−τ + ∂+χ∂−χ+ ∂+~z ∂−~z +

∑

i=1,2

∂+~ri ∂−~ri (2.13)

− kt z
2 ∂−τ − kΨ

(
a2p2

4 b4
r21 +

a2q2

4 c4
r22

)
∂−χ

}
dσ+dσ−.

where and ∂+~ri ∂−~ri = ∂+ri ∂−ri + r2i ∂+ϕi ∂−ϕi for i = 1, 2. As in [16], the action is

right conformal invariant (σ− → f(σ−) with arbitrary f), but it is not invariant under left

conformal transformations (σ+ → f(σ+)).

Now we turn to the Virasoro constraints. Considering first T−−, one finds that, given

the field redefinitions (2.9), the first term of its expansion at large g is

T−− =
1

g

(
− (∂−τ)

2 + (∂−χ)2 + (∂−~z )2 +

2∑

i=1

(∂−~ri)
2

)
+ O

(
g−3/2

)
, (2.14)

where (∂−~z )2 = (∂−z)
2 + z2

(
(∂−δ1)

2 + cos2 δ1 (∂−δ2)
2 + sin2 δ1 (∂−δ3)

2
)

and (∂−~ri)
2 =

(∂−ri)
2 + r2i (∂−ϕi)

2 for i = 1, 2. Notice that in obtaining (2.14) we do not need the

relations (2.11), and kt can also be kept arbitrary.

As for the component T++, we find that the first term of its expansion at large g is

O(g), and imposing its vanishing gives

k2
t = a2 (kψ + p kφ1

+ q kφ2
)2 . (2.15)

Then, choosing the positive root for k and imposing also (2.11), one finds

T++ = − 2 kΨ ∂+( τ − χ ) − k2
Ψ

(
z2 +

a2p2

4 b4
r21 +

a2q2

4 c4
r22

)
+ O(1/g) . (2.16)

Moreover, making use of (2.11) in the positive root of (2.15) one gets kt = kΨ, and this

makes it natural to rescale σ+, defining σ̂+ = kΨ σ
+. We thus find that, given (2.11) and

the positive root of (2.15) for the constants occurring in the field redefinitions, the Polyakov

action in the near-flat space limit is

lim
g→∞

S = − 2

∫ {
− ∂+̂τ ∂−τ + ∂+̂χ∂−χ+ ∂+̂~z ∂−~z +

∑

i=1,2

∂+̂~ri ∂−~ri (2.17)

− z2 ∂−τ −
(
a2p2

4 b4
r21 +

a2q2

4 c4
r22

)
∂−χ

}
dσ̂+dσ−,

while the Virasoro constraints T−− = 0 and T++ = 0, to the first non trivial order, give

rise to the two equations

− (∂−τ)
2 + (∂−χ)2 + (∂−~z )2 +

∑

i=1,2

(∂−~ri)
2 = 0 , (2.18)

2 ∂+̂( τ − χ ) + z2 +
a2p2

4 b4
r21 +

a2q2

4 c4
r22 = 0 . (2.19)

– 5 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
2

For generic p and q, the resulting two dimensional bosonic sigma models admit the sym-

metries SO(4) × SO(2)2, where the SO(4) factor acts on the AdS coordinates ~z, while the

two factors SO(2)’s act on ~r1 and ~r2.

The symmetry is enhanced in the special case of p = q, once the Einstein condition is

employed. Indeed, the Einstein condition Rab = (Λ/R2)gab for the metrics (2.8) provides

three equations allowing to express a2, b2 and c2 in terms of Λ, p and q. They can be

written as

a2p2

4 b4
=

1

2 b2
− Λ

2
,

a2q2

4 c4
=

1

2 c2
− Λ

2
,

1

b2
+

1

c2
= 3Λ . (2.20)

For p = q, the first two relations imply b2 = c2 and the SO(2)2 symmetry is enhanced

to SO(4). Then, letting also Λ = 4, the ratios involved in (2.17) and (2.19) become

equal to 1 and the limiting sigma model becomes the same as for AdS5 × S5 [16]. As

shown in [34], for p 6= q the spaces T p,q are unstable in the sense of Breitenlohner and

Freedman [33]. In the context of the AdS/CFT correspondence this instability means that

such compactifications do not have a unitary field theory dual. Thus, we conclude that for

AdS5 × T p,p backgrounds with T p,p satisfying the Einstein condition, the Polyakov action

and the Virasoro constraints in the near-flat space limit are the same as the ones obtained

on AdS5 × S5 [16] (see appendix A).

The simplest and most important special case belonging to the T p,p family of Einstein

spaces is T 1,1, which is given by (2.8) with p = q = 1, implying that a2 = 1/9 and b2 =

c2 = 1/6. The space T 1,1 space has SU(2)×SU(2)×U(1) symmetry and the corresponding

Calabi Yau cone Y 6 is the conifold. It was first considered by Klebanov and Witten [19]

as an example of AdS/CFT correspondence with N = 1 dual gauge theory.

To close this section we observe that the relation (2.15) for kt comes naturally also

from the Penrose limit [28]. Indeed, in terms of the fields defined in (2.9) we have

x− ∝ g
(
t − a (ψ+p φ1+q φ2)

)
=
(
kt−a (kψ+p kφ1

+q kφ2
)
)
g3/2 σ++

√
g (τ−χ) , (2.21)

and requiring this combination to be O(
√
g) when g → ∞ gives (2.15).

3. The near-flat space limit for the Y p,q metrics

In this section we consider the near-flat space limit for the bosonic sector of AdS5 × Y p,q,

along the lines followed for AdS5 × T p,q in the previous section. We will find the near-flat

space limit is exactly the same as for AdS5×S5. The same conclusion holds for AdS5×Lp,q,r
as well, but, instead of studying this case explictly, we will find it as a special case of more

general metrics with U(1)3 isometries (section 4 and appendix B).

The Y p,q Sasaki Einstein metrics in the canonical form are [20]

ds2M5 = R2

{
1

9

[
dψ − (1 − c y) cos θ dφ+ y dβ

]2
(3.1)

+
1 − c y

6
(dθ2 + sin2 θ dφ2) +

p(y)

6
(dβ + c cos θ dφ)2 +

dy2

6 p(y)

}
,
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where c is a constant, p(y) is a function which can also depend on c and is positive in the

interval [y1, y2], delimited by two of its zeros. The ranges of the coordinates are 0 6 ψ 6 2π,

0 6 φ 6 2π, 0 6 α 6 2π l, 0 6 θ 6 π and y1 6 y 6 y2, where α = −(β + cψ)/6 and

l = l(q, p), with q < p relative prime integers, but we can keep l arbitrary. The isometry

group of (3.1) is SU(2)×U(1)×U(1). The Einstein condition for the metrics (3.1) provides

the exact expression for p(y), but we shall not need it to arrive at our conclusions.

As a starting point we choose the geodesic around which the expansion is performed

to sit at a zero of p(y), as was done for the Penrose limit in [31]. To study the near-flat

space limit, we redefine some of the ten embedding fields as follows

t = kt
√
g σ+ +

τ√
g
, ρ =

z√
g
,

ψ = kψ
√
g σ+ +

Kψ χ

K
√
g

− ϕ1 +
2 y0

p′(y0)
ϕ2 , (3.2)

φ = kφ
√
g σ+ +

Kφ χ

K
√
g

− ϕ1 , θ =

(
6

1 − c y0

) 1

2 r1√
g
,

β = kβ
√
g σ+ +

Kβ χ

K
√
g

+ cϕ1 − 2

p′(y0)
ϕ2 , y = y0 +

3

2
p′(y0)

r22
g
,

where K = (Kψ − (1 − c y0)Kφ + y0Kβ)/3. The point y0 is a zero of p(y), i.e. it is either

y1 or y2, and we assume that p′(y0) 6= 0.

Substituting (3.2) into the string action (2.4) with the metric (3.1) for M5 and taking

the limit g → ∞, the term O(g) in the Lagrangian is a total derivative w.r.t. σ−, and

therefore does not contribute to the action. Instead, as for the previous case, there is a

divergent term O(
√
g ) in the action whose vanishing allows to fix kψ, kφ and kβ in terms

of the free parameter kΨ as follows

kψ = 2

(
1 +

y0

p′(y0)

)
kΨ , kφ = − kΨ , kβ =

(
c − 2

p′(y0)

)
kΨ , (3.3)

which imply

kΨ =
kψ − (1 − c y0)kφ + y0kβ

3
. (3.4)

Using (3.3), we find

lim
g→∞

S = − 2

∫ {
− ∂+τ ∂−τ + ∂+χ∂−χ+ ∂+~z ∂−~z +

∑

i=1,2

∂+~ri ∂−~ri (3.5)

−kt z2 ∂−τ − kΨ

(
r21 + r22

)
∂−χ

}
dσ+dσ−,

where ∂+~ri ∂−~ri = ∂+ri ∂−ri + r2i ∂+ϕi ∂−ϕi and ∂+~z ∂−~z is given in (A.4).

As for the Virasoro constraints, one finds that, after having introduced the field redef-

initions (3.2), the first term in the expansion of T−− at large g is given by (2.14), without

employing the relations (3.3). Instead, the expansion of T++ begins with a term O(g)

whose vanishing gives

k2
t =

(
kψ − (1 − c y0)kφ + y0kβ

)2

9
. (3.6)
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Choosing the positive root and imposing also (3.3) one gets kt = kΨ and

T++ = − 2 kΨ ∂+( τ − χ ) − k2
Ψ

(
z2 + r21 + r22

)
+ O(1/g) . (3.7)

Introducing the rescaled coordinate σ̂+ = kΨ σ
+ on the worldsheet finally yields

lim
g→∞

S = − 2

∫ {
− ∂+̂τ ∂−τ + ∂+̂χ∂−χ+ ∂+̂~z ∂−~z +

∑

i=1,2

∂+~ri ∂−~ri (3.8)

− z2 ∂−τ −
(
r21 + r22

)
∂−χ

}
dσ̂+dσ−,

while, taking the first term of the expansion at large g of T±±, the Virasoro constraints

T−− = 0 and T++ = 0 lead respectively to the following equations

− (∂−τ)
2 + (∂−χ)2 + (∂−~z )2 +

∑

i=1,2

(∂−~ri)
2 = 0 (3.9)

2 ∂+̂( τ − χ ) + z2 + r21 + r22 = 0 . (3.10)

The expressions for the Polyakov action and for the Virasoro constraints are equal to those

obtained for AdS5 × S5 by Maldacena and Swanson [16].

We remark that in finding these results we have assumed nothing about p(y) except

that p(y0) = 0 and p′(y0) 6= 0. As in the previous case, the relation (3.6) for kt comes

naturally also from the Penrose limit by requiring that the target space coordinate x− ∝
g [ t− (ψ − (1 − c y0)φ+ y0β) ]/3 = O(

√
g ) when g → ∞.

The explicit function p(y) for Y p,q obtained imposing the Einstein condition on the

metric (3.1) is [20]

p(y) =
2 c y3 − 3 y2 + a

3(1 − c y)
, (3.11)

where a is an arbitrary constant. Letting a = 2 c y3
0 − 3 y2

0 , y0 becomes an obvious zero for

p(y). One can easily verify that for (3.11) the following identity holds

p′(y) = − 2 y +
c p(y)

1 − c y
, (3.12)

which implies that p′(y0) = − 2 y0 when y0 is a zero for p(y).2

2It is well known that T 1,1 is a special cases of Y p,q [20], therefore it is instructive to recover the field

redefinitions for T 1,1 from the ones for Y p,q. Taking c = 0 and p(y) = 1 − y2 in (3.1) and changing the

coordinates as θ = θ1, φ = −φ1, y = cos θ2 and β = φ2 one gets the T 1,1 metric. Notice that θ2,0 = 0 means

y0 = 1. The expression for p(y) = 1−y2 arises from plugging c = 0 and a = 3 into (3.11), therefore here we

have already used the Einstein condition. Anyway, to recover the field redefinitions for T 1,1 we just need

the local property p′(y0) = − 2 y0 and not the full expression for p(y): letting c = 0, p′(y0) = − 2 y0 and

y0 = 1 into (3.2) and taking into account of the change of coordinates between Y p,q and T 1,1, we get (2.9)

specialized for the T 1,1 parameters. In particular, since y = cos θ2, one understands why y− 1 scales as 1/g

in (3.2) and θ2 as 1/
√

g in (2.9).
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4. Large radius limits for metrics with U(1)3 symmetry

Among all the examples for M5 considered so far, the ones which are also stable Einstein

manifolds give the same results for the Polyakov action and the Virasoro constraints in the

near-flat space limit. This remarkable fact happens also for the Penrose limit of the same

backgrounds: one always gets a ten dimensional pp-wave metric of the form [38 – 40]

ds2 = − 4 dx+dx− +




8∑

i,j=1

Aij x
ixj


 (dx+)2 +

8∑

i=1

dxidxi , (4.1)

where the matrix Aij is constant. This metric describes the so called Cahen-Wallach

spaces [41]. In the case of Sasaki-Einstein spaces the matrix Aij is proportional to the

identity (preserving an SO(8) symmetry) [28 – 31] , while for T p,q with p 6= q the symmetry

is broken to SO(4) × SO(2)2 [28].

In the remaining part of the paper, we study these two large radius limits trying to be

as general as possible, without relying on a particular metric. We find that the coefficients

characterizing the field redefinitions of the near-flat space limit are the same occurring in

the coordinate transformations of the Penrose limit.

In subsection 4.1 we define the metrics we are going to consider, which always preserve

a U(1)3 isometry, and the geodesic that we take as a starting point for the large radius

limits. In subsection 4.2 we consider the Penrose limit for these metrics, which includes

all the metrics mentioned above as special cases after a change of coordinates, and in

subsection 4.3 we study its near-flat space limit.

4.1 The metrics and the extremal geodesic

Any five dimensional Sasaki-Einstein metric on the compact manifold M5 can be written

as

ds2SE =
1

9

(
dψ +Ai dx

i
)2

+
1

6
ĝij dx

idxj , (4.2)

where i, j = 1, . . . , 4 and with Ai and ĝij depending on the four coordinates xi, and ĝij is

locally a Kahler-Einstein metric. The shift of the angle ψ are related to the U(1)R symmetry

in the dual SCFT. If there is an additional U(1)2 symmetry (as for all the Einstein metrics

which are explicitly known) the metric can be further simplified. We consider a general

metric of the following form:

ds2M5 = R2
[
gab(~θ ) dψa dψb + g44(~θ ) dθ2

1 + g55(~θ ) dθ2
2

]
. (4.3)

The non trivial dependence is only on the coordinates ~θt and we can arrange the three

remaining ones into a vector ~ψt = (ψ1, ψ2, ψ3) = (ψ, φ1, φ2). We find it convenient to

introduce also g̃44(~θ ) ≡ g44(~θ )−1 and g̃55(~θ ) ≡ g55(~θ )−1. The metric (4.3) preserves the

U(1)3 symmetry given by the shifts of the angles ψa, and, in general, it satisfies neither the

Einstein nor the Sasaki condition. We can think of (4.3) as a U(1)3 fibration over a two

dimensional polygon parameterized by the coordinates θi, see the figure. One of the three

– 9 –
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θ

1
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Figure 1: Pictorial representation of the two dimensional base of M5. The large radius limits

explore only a region of space close to the geodesic.

circles in the U(1)3 fiber shrinks to zero size on the edges of the polygon, so two of them

shrink to zero size on the corners of the polygon.3

At this point we have to specify a null geodesic in order to take the large radius limits

along it. The null geodesic is sitting at ρ = 0 in AdS5 and at ~θt = ~θt
0 = (θ1,0, θ2,0).

An important remark is that the values of θi,0 we will consider are at an extremal point:

the range of the θi coordinates is θi,0 ≤ θi, for values of θi close to θi,0. In other words,

our geodesic is sitting on a corner of the polygon parameterized by the coordinates θi, as

depicted in the figure. These special geodesics were called extremal geodesics in [27]. In

the Sasaki-Einstein case, the BPS operators dual to a pointlike string moving along such

geodesics are particularly simple to study [27, 24].4

Since θi,0 is an extremal point we take the functions g̃44(~θ ) and g̃55(~θ ) vanishing

at θi = θi,0. This means that g44(~θ) and g55(~θ) are both divergent when ~θ → ~θ0. At

θi = θi,0, two out of the three circles in the U(1)3 fibration shrink to zero size and the

term gab(~θ ) dψa dψb becomes a perfect square (
∑

I gI dψI)
2; in other words, the following

relation holds

gab(~θ0) =
(
gaa(~θ0) gbb(~θ0)

) 1

2 a 6= b . (4.4)

We remark that all the known five dimensional Einstein metrics are special cases of (4.3).

4.2 The Penrose limit for a generalized U(1)3 metric

In order to study the Penrose limit of (4.3), let us consider a null geodesic specified by the

3This is standard in toric geometry, however here we are not necessarily preserving supersymmetry (in

other words the metric cone over our M5 does not have to be Kahler).
4It might be interesting to consider the large radius limits in the case of non-extremal geodesics.
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values ρ = 0 and ~θt = ~θt
0 = (θ1,0, θ2,0). Introducing ρ = z/R and expanding gab(~θ ) around

~θ0, the ten dimensional metric of AdS5 ×M5 for large R, to the order which is relevant for

our purposes, is

ds2= R2
[
− dt2 + gab(~θ0) dψa dψb

]
− z2dt2 + d~z 2 (4.5)

+R2 ∂kgab(~θ0) (θk − θk,0) dψa dψb +R2 ∂k∂pgab(
~θ0)

2
(θk − θk,0)(θp − θp,0) dψa dψb

+R2 dθ2
1

g̃44(~θ0) + ∂kg̃44(~θ0) (θk − θk,0)
+R2 dθ2

2

g̃55(~θ0) + ∂kg̃55(~θ0) (θk − θk,0)
,

where ∂k ≡ ∂θk
. We assume that

∂2g̃44(~θ0) = ∂1g̃55(~θ0) = 0 and ∂1g̃44(~θ0) 6= 0 , ∂2g̃55(~θ0) 6= 0 , (4.6)

which lead to the following definitions of the coordinates rk

θk − θk,0 = ηk,2
r2k
R2

k = 1, 2 (4.7)

where the constant ηk,2 are fixed to give coefficient 1 in front of dr2k and read

η1,2 =
∂1g̃44(~θ0)

4
, η2,2 =

∂2g̃55(~θ0)

4
. (4.8)

Notice that, because of the definitions (4.7), the term containing ∂k∂pgab(~θ0) in (4.5) is

infinitesimal when R→ ∞. The expansion (4.5) then becomes

ds2 = R2
[
− dt2 + gab(~θ0) dψa dψb

]
−z2dt2+d~z 2+

∑

k=1,2

(
dr2k + η2

k,2 r
2
k d

~ψtM (k)d~ψ
)

(4.9)

up to infinitesimal term, where we have introduced two 3 × 3 symmetric matrices M (k),

whose elements are

M
(k)
ab ≡ ∂kgab(~θ0) k = 1, 2 . (4.10)

Using eq. (4.4)the O(R2) term in (4.9) becomes R2
[
− dt2 + dΨ2

]
, where Ψ is defined as

follows

Ψ = g11(~θ0)
1

2 ψ + g22(~θ0)
1

2 φ1 + g33(~θ0)
1

2 φ2 . (4.11)

At this point one introduces the coordinates ~ϕ t = (ϕ1, ϕ2)

~φ = ~λΨ + Ω ~ϕ , (4.12)

where the vector ~λ and the matrix Ω have to be fixed. Using (4.11) to write ψ in terms of

Ψ and ~φ, the vector ~ψ becomes

~ψ =

(
ψ
~φ

)
=

(
ω0Ψ − ~ω t~φ

~φ

)
= ω

[(
1
~λ

)
Ψ +

(
0

Ω ~ϕ

)]
, (4.13)
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with the constant matrix ω given by

ω =

(
ω0 − ~ω t

~0 id2

)
, (4.14)

whose elements can be read from (4.11) and are

ω0 = g11(~θ0)
−

1

2 , ~ω t =
(
g22(~θ0)

1

2 g11(~θ0)
−

1

2 , g33(~θ0)
1

2 g11(~θ0)
−

1

2

)
. (4.15)

Given all these definitions, for k = 1, 2 one obtains

d~ψtM (k)d~ψ =
(

1 ~λt
)
M (k)
ω

(
1
~λ

)
dΨ2 + 2

(
0 d~ϕ t Ω t

)
M (k)
ω

(
1
~λ

)
dΨ

+
(

0 d~ϕ t Ω t
)
M (k)
ω

(
0

Ω d~ϕ

)
, (4.16)

where we have introduced the symmetric matrix

M (k)
ω = ωtM (k) ω . (4.17)

It is convenient to write M
(k)
ω in the form

M (k)
ω =


m

(k)
ω ~µ

(k) t
ω

~µ
(k)
ω H

(k)
ω


 , (4.18)

and to express its elements in terms of ω0 , ~ω and M (k) as

m(k)
ω = ω2

0 m
(k) , (4.19)

~µ(k)
ω = ω0

(
~µ(k) −m(k) ~ω

)
, (4.20)

H(k)
ω = H(k) − ~µ(k) ~ω t − ~ω ~µ(k)t +m(k) ~ω ~ω t , (4.21)

where the quantities without the index ω refer to M (k). In order to obtain a pp-wave

metric the term mixing dΨ and d~ϕ t in (4.16) must vanish and this condition allows to fix
~λ in our change of variables 4.12. Indeed

M (k)
ω

(
1
~λ

)
=

(
~µ

(k) t
ω

~λ+m
(k)
ω

H
(k)
ω
~λ+ ~µ

(k)
ω

)
(4.22)

and the term mixing dΨ and d~ϕ t thus vanishes provided that ~λ satisfies

H(k)
ω
~λ+ ~µ(k)

ω = ~0 k = 1, 2 . (4.23)

In general M (1) 6= M (2) (which implies M
(1)
ω 6= M

(2)
ω ) and we want to keep them unrelated,

so that both matrices H
(k)
ω must have a vanishing determinant. Indeed, if one of them

were invertible, one would find ~λ from the equation associated to it and the remaining one

would become a non trivial relation among the elements of M
(1)
ω and M

(2)
ω .
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Thus, given the vector ~λ satisfying (4.23), one gets

d~ψtM (k)d~ψ =
(
~µ(k) t
ω

~λ+m(k)
ω

)
dΨ2 + d~ϕ t ΩtH(k)

ω Ω d~ϕ . (4.24)

Now one introduces the target space coordinates x± in the usual way

t = µx+ +
x−

µR2
, Ψ = µx+ − x−

µR2
, (4.25)

and (4.9) becomes

ds2= − 4 dx+dx− + µ2

{
− z2 +

∑

k=1,2

r2k η
2
k,2

(
~µ(k) t
ω

~λ+m(k)
ω

) }
(dx+)2

+ d~z 2 +
∑

k=1,2

(
dr2k + r2k η

2
k,2 d~ϕ

t ΩtH(k)
ω Ω d~ϕ

)
, (4.26)

where ηk,2 are specified in (4.8) and terms O(1/R) have been neglected.

Notice that the term multiplying (dx+)2 in (4.26) is fixed, being the vector ~λ deter-

mined as the solution of (4.23), but we are still free to choose the matrix Ω. To fix Ω, we

employ the following fact: if trH
(k)
ω 6= 0 and there is no real ρ 6= 0 such that H

(1)
ω = ρ2H

(2)
ω ,

one can always find the matrix Ω satisfying

η2
1,2 ΩtH(1)

ω Ω =

(
1 0

0 0

)
and η2

2,2 ΩtH(2)
ω Ω =

(
0 0

0 1

)
. (4.27)

Indeed,5 since detH
(k)
ω = 0 and trH

(k)
ω 6= 0, one eigenvalue of H

(k)
ω is 0 and the other one

is non vanishing. This means that the rank of H
(k)
ω is 1 and therefore there is a non trivial

vector w(k) such that H
(k)
ω = w(k) w(k) t. The hypothesis H

(1)
ω 6= ρ2H

(2)
ω implies that w(1)

and w(2) are linearly independent. Now let us choose two non trivial vectors v(k) ∈ kerH
(k)
ω .

Since the kernel of H
(k)
ω is the linear space orthogonal to w(k), from the linear indepedence

of w(1) and w(2), one can see that v(1) and v(2) are also linearly independent. Thus,

considering {v(2), v(1)} as a basis for R
2 and writing the bilinear products given by H

(k)
ω in

this basis, one gets
(
v(2)tH

(1)
ω v(2) v(2)tH

(1)
ω v(1)

v(1)tH
(1)
ω v(2) v(1)tH

(1)
ω v(1)

)
=

(
v(2)tH

(1)
ω v(2) 0

0 0

)
,

(
v(2)tH

(2)
ω v(2) v(2)tH

(2)
ω v(1)

v(1)tH
(2)
ω v(2) v(1)tH

(2)
ω v(1)

)
=

(
0 0

0 v(1)tH
(2)
ω v(1)

)
. (4.28)

The matrix Ω changes the basis from the one we are using to {v(2), v(1)}, and one can

always choose v(2) and v(1) so that v(2)tH
(1)
ω v(2) = η−2

1,2 and v(1)tH
(2)
ω v(1) = η−2

2,2 .

With this choice of Ω, the metric (4.26) becomes the pp-wave metric

ds2 = − 4 dx+dx− + µ2

{
− z2 +

∑

k=1,2

r2k η
2
k,2

(
~µ(k) t
ω

~λ+m(k)
ω

)}
(dx+)2 + d~z 2 +

∑

k=1,2

d~r 2
k ,

(4.29)

5We are grateful to Francesco Bonsante for providing us this argument.
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where d~r 2
k = dr2k + r2k dϕ

2
k and the matrix Aij is diagonal (see (4.1)). As already remarked

at the beginning of this section, for all the metrics we are considering g11(~θ ) is constant

and this implies m(k) = 0 for k = 1, 2, which slightly simplify (4.29).

4.3 The near-flat space limit for the U(1)3 metric

In this subsection we consider the near-flat space limit of the Polyakov action and the

Virasoro constraints for AdS5 × M5, where M5 is equipped with the generalized U(1)3

metric introduced in the previous subsection.

We begin by considering the Lagrangian occurring in the Polyakov action (2.4)

L = − 2 g GMN ∂+X
M∂−X

N , (4.30)

where the target space metric GMN describes AdS5 ×M5 and the metric on the compact

M5 can be read from (4.3). Introducing the field z as a rescaling of ρ = z/
√
g, the fields

rk as

θk − θk,0 = ηk,2
r2k
g

k = 1, 2 (4.31)

with ηk,2 given by (4.8) and the field Ψ by (4.11), the expansion of the Lagrangian (4.30)

reads

L = − 2

{
g
[
− ∂+t ∂−t+ ∂+Ψ ∂−Ψ

]
(4.32)

− z2 ∂+t ∂−t+ ∂+~z ∂−~z +
∑

k=1,2

(
∂+rk ∂−rk + r2k η

2
k,2 ∂−

~ψ tM (k) ∂+
~ψ
)}

,

where the matrices M (k) have been defined in (4.10) and terms infinitesimal when g → ∞
have been neglected.

In order to analyze the near-flat space limit, we perform the following field redefinitions

t = kt
√
g σ+ +

τ√
g
, Ψ = kΨ

√
g σ+ +

χ√
g
, (4.33)

where kt and kΨ are constants, so that the expansion (B.9) becomes

L = − 2

{
g
[
− kt ∂−τ + kΨ ∂−χ

]
− ∂+τ ∂−τ + ∂+χ∂−χ (4.34)

− kt z
2 ∂−τ + ∂+~z ∂−~z +

∑

k=1,2

(
∂+rk ∂−rk + r2k η

2
k,2 ∂−

~ψ tM (k) ∂+
~ψ
)}

.

Notice that the divergent term O(g) is a total derivative, and therefore can be ignored in

the limit of the Polyakov action. Now we redefine ~φ t = (φ1, φ2) as

~φ = ~kφ
√
g σ+ +

~Kφ χ

K
√
g

+ Π ~ϕ , (4.35)
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where K, the vectors ~k t
φ = (kφ1

, kφ2
) and ~K t

φ = (Kφ1
,Kφ2

) and the matrix Π are constant

quantities. Plugging (4.35) and the second equation of (4.33) into the definition (4.11), one

gets the field redefinition for ψ, and, as a consequence, also the following relations

kΨ = g11(~θ0)
1

2 kψ + g22(~θ0)
1

2 kφ1
+ g33(~θ0)

1

2 kφ2
, (4.36)

K = g11(~θ0)
1

2 Kψ + g22(~θ0)
1

2 Kφ1
+ g33(~θ0)

1

2 Kφ2
. (4.37)

The vector ~ψ t = (ψ, φ1, φ2) thus reads

~ψ = ω

[(
kΨ

~kφ

)
√
g σ+ +

(
1

~Kφ/K

)
χ√
g

+

(
0

Π ~ϕ

)]
, (4.38)

with the matrix ω defined in (4.14). The terms containing r2k in (4.34), when expanded to

the relevant order, become

∂− ~ψ
tM (k) ∂+

~ψ=
(

0 ∂−~ϕ
t Π t

)
M (k)
ω

(
kΨ

~kφ

)
√
g +

(
1 ~K t

φ/K
)
M (k)
ω

(
kΨ

~kφ

)
∂−χ

+
(

0 ∂−~ϕ
t Π t

)
M (k)
ω

(
0

Π ∂+~ϕ

)
+ O(1/

√
g ) , (4.39)

where the matrices M
(k)
ω (k = 1, 2) are given in (4.17). Now, since

M (k)
ω

(
kΨ

~kφ

)
=

(
~µ

(k) t
ω

~kφ +m
(k)
ω kΨ

H
(k)
ω
~kφ + ~µ

(k)
ω kΨ

)
, (4.40)

imposing the vanishing of the divergent term in (4.39) provides the two equations

H(k)
ω
~kφ + ~µ(k)

ω kΨ = ~0 k = 1, 2 . (4.41)

Comparing them with (4.23), we find

~kφ
kΨ

= ~λ , (4.42)

which tells that the change of coordinates occurring in the Penrose limit fixes some pa-

rameters of the field redefinitions of the near-flat space limit. Once we know ~kφ, then kψ
follows from (4.36). Given ~kφ/kΨ solving (4.41), the expansion (4.39) becomes

∂− ~ψ
tM (k) ∂+

~ψ =
(
~µ(k) t
ω

~kφ +m(k)
ω kΨ

)
∂−χ+ ∂−~ϕ

t Π tH(k)
ω Π ∂+~ϕ +O(1/

√
g ) . (4.43)

At this point, choosing

Π = Ω , (4.44)

precisely the matrix found for the Penrose limit as the solution of (4.27), for the Lagrangian

in the near-flat space limit one obtains

L = − 2



 g

[
− kt ∂−τ + kΨ ∂−χ

]
− ∂+τ ∂−τ + ∂+χ∂−χ+ ∂+~z ∂−~z +

∑

k=1,2

∂+~rk ∂−~rk

− kt z
2 ∂−τ + kΨ



∑

k=1,2

r2k η
2
k,2

(
~µ(k) t
ω

~kφ
kΨ

+m(k)
ω

)
 ∂−χ



 , (4.45)
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up to O(1/
√
g ) terms, where the coefficients multiplying r2k (k = 1, 2) within the square

brackets are fixed. The constants kt and kΨ can be related studying one of the Virasoro

constraints.

Considering T±± given in (2.5), an analysis similar to the one performed for the La-

grangian leads to

T±± = − (∂±t)
2 + (∂±Ψ)2 (4.46)

+
1

g

[
− z2 (∂±t)

2 + (∂±~z )2 +
∑

k=1,2

(
(∂±rk)

2 + r2k η
2
k,2 ∂±

~ψ tM (k) ∂± ~ψ
)]

,

up to o(1/g) terms. Using the field redefinitions (4.33) and (4.35) with the choice (4.44)

for Π, now gives

T−− =
1

g

(
− (∂−τ)

2 + (∂−χ)2 + (∂−~z )2 +
∑

k=1,2

(∂−~rk)
2

)
+ O

(
g−3/2

)
. (4.47)

Notice that this result does not require specifying either kt or ~kφ. Instead, the vanishing

of the term O(g) in T++ yields

k2
t = k2

Ψ . (4.48)

Letting kt = kΨ ≡ k and using the vector ~kφ solving (4.41), we find

T++ = − 2 k ∂+( τ − χ ) − k2

(
z2 −

∑

k=1,2

r2k η
2
k,2

(
~µ(k) t
ω

~kφ
kΨ

+m(k)
ω

))
, (4.49)

up to terms infinitesimal in the limit g → ∞.

Thus, with kt = kΨ ≡ k, it becomes natural to introduce σ̂+ = k σ+, and the Polyakov

action in the near-flat space limit reads

lim
g→∞

S = − 2

∫ {
− ∂+̂τ ∂−τ + ∂+̂χ∂−χ+ ∂+̂~z ∂−~z +

2∑

i=1

∂+̂~ri ∂−~ri (4.50)

− z2 ∂−τ −
[ ∑

k=1,2

r2k η
2
k,2

(
~µ(k) t
ω

~kφ
kΨ

+m(k)
ω

)]
∂−χ

}
dσ̂+dσ− ,

while the Virasoro constraints T−− = 0 and T++ = 0, to the first non trivial order, give

respectively

− (∂−τ)
2 + (∂−χ)2 + (∂−~z )2 +

2∑

k= 1

(∂−~rk)
2 = 0 , (4.51)

2 ∂+̂( τ − χ ) + z2 −
∑

k=1,2

r2k η
2
k,2

(
~µ(k) t
ω

~kφ
kΨ

+m(k)
ω

)
= 0 . (4.52)

In appendix B we discuss in detail the application of the results obtained in this section

for the relevant known cases.
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5. Conclusions

In this paper we studied the near-flat space limit for the bosonic sector of strings prop-

agating in ten dimensional target spaces AdS5 × M5 with different choices for the five

dimensional internal manifold, like T p,q, Y p,q and Lp,q,r. Since p 4
√
λ is kept fixed, this limit

explores an intermediate region between the pp-wave and giant magnon regimes.

Our first result is that the bosonic sector of the limiting theory is the same found for

AdS5 × S5 in [16], at least for the stable Einstein spaces, which admit an unitary field

theory dual. In addition, by introducing proper generalized metrics with U(1)3 symmetry,

we have shown that the coefficients characterizing the field redefinitions of the near-flat

space limit are the same occurring in the coordinate transformations adopted to get the

pp-wave metric as the Penrose limit of AdS5 ×M5.

We remark that the near-flat space limit of the fermionic sector for internal spaces

different from S5 remains to be studied, since the explicit form of the fermionic sector is

not known at the moment (the presence of the RR five form makes it difficult to construct

the explicit form of the IIB superstring action on AdS5 ×M5 in terms of the coordinate

fields, even for the simplest case of M5 = T 1,1). However, our results suggest that the near-

flat space limit of the full superstring sigma model on AdS5×M5 with Sasaki-Einstein M5

could be the same supersymmetric sigma model found for AdS5 × S5 by Maldacena and

Swanson [16]. The possible presence of integrability should crucially depend on the precise

form of the fermionic part. Let us stress that it is not clear whether the bosonic sigma

models we considered are consistent reductions of the full supersymmetric sigma models,

which are still unknown.

Our analysis could be generalized to study the near-flat space limit for the β deforma-

tions of the backgrounds considered here.

The final aim of our work is to improve the understanding of the integrable structure

underlying the AdS/CFT correspondence by identifying the features of the already known

results that can be extended to the less supersymmetric cases. Much has still to be done

in this direction.
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A. The near-flat space limit of AdS5 × S5

In this appendix we briefly review the first part of the near-flat space limit analysis for

type IIB string theory on AdS5 × S5 performed by Maldacena and Swanson [16]. In order
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to compare this case with the ones presented in this paper, we consider only the bosonic

sector. The metric of S5 can be written

ds2S5 = R2
(

cos2 θ dψ2 + dθ2 + sin2 θ dΩ̃2
3

)
, (A.1)

where dΩ̃2
3 = dγ2

1 +cos2 γ1 dγ
2
2 +sin2 γ1 dγ

2
3 is the metric of the unit three sphere. To study

the near-flat space limit of AdS5 × S5, they introduced the field redefinitions

t =
√
g σ+ +

τ√
g
, ρ =

z√
g
, (A.2)

ψ =
√
g σ+ +

χ√
g
, θ =

y√
g
.

Taking the limit g → ∞, one then finds that the leading term in the Lagrangian is propor-

tional to g (∂−τ − ∂−χ), which however is a total derivative. Thus [16]

lim
g→∞

S = − 2

∫
{−∂+τ ∂−τ+∂+χ∂−χ+∂+~z ∂−~z+∂+~y ∂−~y−z2 ∂−τ−y2 ∂−χ} dσ+dσ− ,

(A.3)

where

∂+~z ∂−~z = ∂+z ∂−z + z2
(
∂+δ1 ∂−δ1 + cos2 δ1 ∂+δ2 ∂−δ2 + sin2 δ1 ∂+δ3 ∂−δ3

)
, (A.4)

∂+~y ∂−~y = ∂+y ∂−y + y2
(
∂+γ1 ∂−γ1 + cos2 γ1 ∂+γ2 ∂−γ2 + sin2 γ1 ∂+γ3 ∂−γ3

)
. (A.5)

This action is right conformally invariant, i.e. it is invariant under σ− → f(σ−), but is not

invariant under left conformal transformations. As for the Virasoro constraints T−− = 0

and T++ = 0 (see (2.5)), imposing the vanishing of the first non trivial term of their

expansion at large g, one finds the two equations

− (∂−τ)
2 + (∂−χ)2 + (∂−~z )2 + (∂−~y )2 = 0 , (A.6)

2 ∂+( τ − χ ) + z2 + y2 = 0 . (A.7)

Using these conditions and suitable worldsheet coordinates, one finally arrives at a gauge

fixed Lagrangian which has been employed to study the S matrix at one [17] and two

loops [18].

B. Special cases

In this appendix we recover the Penrose and near-flat space limits for T p,q and Y p,q as

special cases of generalized U(1)3 metrics, applying the results obtained in sections 4. In

the last subsection we explicitly consider the special case of the Lp,q,r metrics.

B.1 The T p,q case

The metrics (2.8) in the coordinates (ψ, φ1, φ2, θ1, θ2) have strictly positive g44(~θ0) and

g55(~θ0), therefore we cannot directly apply the results of section 4, but only after the
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change of coordinates yi = cos θi for i = 1, 2. In this subsection we apply the procedure

explained in section 4 to a metric with U(1)3 symmetry satisfying conditions which are

slightly different with respect to those introduced in section 4. This metric allows to

recover the results of section 2 as a special case in a direct way.

In particular, given a null geodesic in AdS5×M5 having ρ = 0 and ~θt = ~θt
0 = (θ1,0, θ2,0),

now we take (4.3) with g44(~θ0) > 0 and g55(~θ0) > 0. The expansion of the ten dimensional

metric is then

ds2= R2
[
− dt2 + gab(~θ0) dψa dψb

]
− z2dt2 + d~z 2 +R2g44(~θ0) dθ

2
1 +R2g55(~θ0) dθ

2
2 (B.1)

+R2 ∂k gab(~θ0) (θk − θk,0) dψa dψb +R2 ∂k∂p gab(
~θ0)

2
(θk − θk,0)(θp − θp,0) dψa dψb .

Then, we also assume

∂k gab(~θ0) = 0 k = 1, 2 (B.2)

which induce the following definitions of the coordinates rk

θk − θk,0 = ηk,1
rk
R

k = 1, 2 (B.3)

where ηk,1 are constants. Another assumption we make is

∂1∂2 gab(~θ0) = 0 , (B.4)

in order to avoid a term containing r1r2 after the limit R → ∞. The terms dθ2
k in (B.1)

suggest that the most convenient choice for ηk,1 is

η1,1 = g44(~θ0)
−

1

2 , η2,1 = g55(~θ0)
−

1

2 . (B.5)

At this point the expansion of the metric of AdS5 ×M5 for large R becomes

ds2 = R2
[
− dt2 + gab(~θ0) dψa dψb

]
− z2dt2 + d~z 2 +

∑

k=1,2

(
dr2k +

η2
k,1

2
r2k d

~ψtN (k)d~ψ

)
,

(B.6)

where

N (k) ≡ ∂2
k gab(

~θ0) k = 1, 2 . (B.7)

Comparing (B.6) with (4.9), it becomes clear that hereafter the procedure is exactly the

same as in section 4.2 but with N (k) instead of M (k) and with η2
k,1/2 instead of η2

k,2.

As for the near-flat space limit for this U(1)3 metric, the fields rk are now defined as

θk − θk,0 = ηk,1
rk√
g

k = 1, 2 (B.8)

with ηk,1 given by (B.5), while all the other redefinitions are the usual ones. The expansion

of the Lagrangian now reads

L = − 2

{
g
[
− ∂+t ∂−t+ ∂+Ψ ∂−Ψ

]
(B.9)

− z2 ∂+t ∂−t+ ∂+~z ∂−~z +
∑

k=1,2

(
∂+rk ∂−rk + r2k

η2
k,1

2
∂− ~ψ

tN (k) ∂+
~ψ

)}
,
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where N (k) are the matrices (B.7). Likewise for the Penrose limit, also for the near-flat

space limit we can apply the formulas obtained in section 4.3, provided that one uses N (k)

instead of M (k) and η2
k,1/2 instead of η2

k,2.

The Penrose limit of the T p,q metrics. Here, specializing our discussion to (2.8),

we recover the coordinate transformations found in [28]. The null geodesic for the ten

dimensional metric is described by ρ = 0, θ1 = θ2 = 0 and t = Ψ with Ψ = a(ψ+p φ1+q φ2).

Having checked that the metrics (2.8) satisfy all the assumptions made throughout the

above discussion, eqs. (4.23) with the proper substitutions (N (k) instead of M (k) and of

η2
k,1/2 instead of η2

k,2) become respectively
(

2 b2 0

0 0

)
~λ =

(
a p

0

)
,

(
0 0

0 2 c2

)
~λ =

(
0

a q

)
. (B.10)

Their solution

λ1 =
a p

2 b2
, λ2 =

a q

2 c2
, (B.11)

gives the vector to use in (4.12). Notice that detH
(k)
ω = 0 for k = 1, 2, as expected.

Given (B.11), one finds that

η2
1,1

2

(
~µ(1) t
ω

~λ+m(1)
ω

)
= − a2p2

4 b4
,

η2
2,1

2

(
~µ(2) t
ω

~λ+m(2)
ω

)
= − a2q2

4 c4
. (B.12)

Finally, comparing the matrices H
(k)
ω that can be read from (B.10) with (4.27) properly

adapted to the U(1)3 metric we are considering, one can easily conclude that the Ω to

adopt in (4.12) for this case is the identity matrix.

At this point it is straightforward also to specialize the formulas of subsection 4.3

for (2.8) and recover the results of section 2 for the near-flat space limit of T p,q.

B.2 The Y p,q case

When M5 is a Y p,q manifold with metric (3.1), the null geodesic in the ten dimensional

space is given by ρ = 0, θ = 0 and y = y0 such that p(y0) = 0. Thus, the Y p,q metrics (3.1)

written in the usual coordinates (ψ, φ, β, θ, y) are not included either in the generalized

U(1)3 metric considered in section 4.2 or in the one introduced in the subsection B.1,

but they fall between them. Therefore, we can introduce a U(1)3 metric satisfying mixed

assumptions, namely with g44(~θ0) > 0 and g̃55(~θ0) = ∂1 g̃55(~θ0) = 0 but ∂2 g̃55(~θ0) 6= 0, and

we also assume that

∂1 gab(~θ0) = 0 , ∂2 gab(~θ0) 6= 0 . (B.13)

Thus, as we have learned from the previous case, we introduce the coordinates rk via

θ1 − θ1,0 = η1,1
r1
R
, θ2 − θ2,0 = η2,2

r22
R2

(B.14)

where the constants η1,1 and η2,2 are defined in (B.5) and (4.8), respectively. The procedure

to analyze the Penrose limit and the near-flat space limit in this case is the same of section 4

but now only the matrix M (1) must be replaced by the matrix N (1) defined in (B.7) and

only η2
1,2 must be replaced by η2

1,1/2.
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The Penrose limit for the Y p,q metrics. Specifying the analysis of the Penrose limit

to the Y p,q metrics (3.1), we have ~θt = (θ, y) and ~ψt = (ψ, φ, β). The null geodesic for the

ten dimensional metric is given by ρ = 0, θ = 0, y = y0 such that p(y0) = 0 and t = Ψ

with Ψ = (ψ − (1 − c y0)φ + y0 β)/3. The metric (3.1) verifies all the assumptions made

throughout the above discussion, and therefore we can apply the final expressions.

In particular, g̃55(θ1, θ2) = 6 p(y) depends only on θ2, and the condition ∂2 g̃55(~θ0) 6= 0

becomes p′(y0) 6= 0. The constants η1,1 and η2,2 read

η1,1 =

(
1 − c y0

6

)−
1

2

, η2,2 =
3

2
p′(y0) . (B.15)

The eqs. (4.23), once adapted to the U(1)3 metric we are considering, become respectively

1 − c y0

3

(
1 0

0 0

)
~λ +

1 − c y0

3

(
1

0

)
=

(
0

0

)
, (B.16)

p′(y0)

6

(
c c2

1 c

)
~λ+

1

3

(
c

1

)
=

(
0

0

)
, (B.17)

and their solution is

λ1 = − 1 , λ2 = c− 2

p′(y0)
. (B.18)

Reading H(k) from (B.16) and (B.17), one can verify that detH(k) = 0 for k = 1, 2, as

expected. With ~λ given by (B.18), we get

1

2 g44(~θ0)

(
~µ(1) t
ω

~λ+m(1)
ω

)
=

∂2g̃55(~θ0)

4

(
~µ(2) t
ω

~λ+m(2)
ω

)
= − 1 . (B.19)

Finally, the matrix Ω for the Y p,q satisfying the properly adapted version of (4.27) is

Ω =

(
−1 0

c −2/p′(y0)

)
. (B.20)

Summarizing, aside from ρ = z/R, the change of coordinates which allows to find the

pp-wave metric (4.1) as large R limit of the metrics (3.1) is

ψ =

(
2 +

2 y0

p′(y0)

)
Ψ − ϕ1 +

2 y0

p′(y0)
ϕ2 , (B.21)

φ = −Ψ − ϕ1 , θ =

(
6

1 − c y0

) 1

2 r1
R
,

β =

(
c− 2

p′(y0)

)
Ψ + cϕ1 − 2

p′(y0)
ϕ2 , y = y0 +

3

2
p′(y0)

r22
R2

,

where Ψ and t are given in (4.25).

Let us remark that that in finding the pp-wave metric (4.1) we have not made use of

the explicit expression of p(y) for Y p,q, but just of the conditions p(y0) = 0 and p′(y0) 6= 0.

Imposing p′(y0) = − 2 y0 into (B.21), we recover the change of coordinates found in [31].
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Even for the Penrose limit, one can recover the pp-wave changes of coordinates for

T 1,1 as a special case of (B.21) letting c = 0, p′(y0) = − 2 y0 and taking into account that

θ = θ1, φ = −φ1, y = cos θ2 and β = φ2, as was done for the near-flat space in the last

part of section 3.

B.3 The Lp,q,r metrics

In this appendix we study the near-flat space limit of the Polyakov action and of the

Virasoro constraints for AdS5 × Lp,q,r, treating these target space metrics as special cases

of the generalized U(1)3 metric introduced in subsection B.2.

The Lp,q,r metrics in the canonical form [21] are

ds2M5 = R2

{[
dψ +

α− x

α
sin2 θ dφ+

β − x

β
cos2 θ dγ

]2

+
∆θ − x

∆θ
dθ2 +

∆θ − x

4∆x
dx2

+
∆x

∆θ − x

(
sin2 θ

α
dφ+

cos2 θ

β
dγ

)2

+
∆θ

∆θ − x
cos2 θ sin2 θ

(
α− x

α
dφ− β − x

β
dγ

)2
}
, (B.22)

where ∆θ = α cos2 θ+β sin2 θ, but we keep ∆x as a generic function of x for our purposes.

For the coordinate θ we have 0 6 θ 6 π/2, while x lies in the interval [x1, x2], whose

endpoints are two adjacent real roots of ∆x and ∆x > 0. We can require x1 > 0 and also

that α > x2, β > x2.

The null geodesic we consider is characterized by ρ = 0, θ = 0 and x = x0 such that

∆x|x0
= 0 (i.e. x0 is either x1 or x2) and t = Ψ with Ψ = ψ + (1 − x0/β)γ.

The Lp,q,r metrics (B.22) are special cases of the generalized metrics introduced in

subsection B.2. In particular, ~θt = (θ, x), ~ψt = (ψ, φ, γ) and g̃55(θ1, θ2) = 4∆x/(∆θ − x)

depends on both θ1 and θ2, but the condition ∂2 g̃55(~θ0) 6= 0 becomes ∆′
0 ≡ ∆′

x|x0
6= 0.

The Penrose limit of the Lp,q,r metrics. To study the Penrose limit, we repeat the

procedure explained in subsection B.2 for (B.22). Using the notation of [31], where the

constants a0, b0 and c0 are defined as

a0 =
α(β − x0)

∆′
0

, b0 =
β(α − x0)

∆′
0

, c0 = − (β − x0)(α− x0)

∆′
0

, with ∆′

0 ≡ ∆′

x|x0

(B.23)

one finds

η1,1 =

(
α− x0

α

)−
1

2

, η2,2 =
∆′

0

α− x0
. (B.24)

In this case, the properly adapted version of eqs. (4.23) become respectively

2

(
(α− x0)/α (x0 − β)/β

(x0 − β)/β [α(β − x0)
2]/[β2(α− x0)]

)
~λ + 2

(
(α− x0)/α

(x0 − β)/β

)
=

(
0

0

)
(B.25)

1

β

(
0 0

0 1/b0

)
~λ− 1

β

(
0

1

)
=

(
0

0

)
(B.26)
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and their solution is

λ1 = − 1 + a0 , λ2 = b0 . (B.27)

Now one can check that detH(k) = 0 for k = 1, 2 and that, given the solution (B.27) for
~λ, the two equation in (B.19) hold also in this case.

The matrix Ω solving the properly adapted version of (4.27) reads

Ω =

(
a0 1

b0 0

)
. (B.28)

Summarizing, aside from ρ = z/R, the change of coordinates in the metric of AdS5 ×Lp,q,r
giving the pp-wave metric (4.1) when R→ ∞ is6

ψ =
(
1 + c0

)
Ψ + c0 ϕ1 , (B.29)

φ =
(
− 1 + a0

)
Ψ + a0 ϕ1 + ϕ2 , θ =

(
α

α− x0

) 1

2 r1
R
,

γ = b0 Ψ + b0 ϕ1 , x = x0 +
∆′

0

α− x0

r22
R2

,

where Ψ and t are given in (4.25). We remark that we have not made use of the explicit

expression of ∆x for Lp,q,r, but only of the conditions ∆x|x0
= 0 and ∆′

x|x0
6= 0.

The near-flat space limit of the Lp,q,r metrics. As shown in section 4.3, the co-

efficients characterizing the field redefinitions of the near-flat space limit are the same

occurring in the change of coordina tes leading to the pp-wave metric when R → ∞. In

particular, the field redefinitions involved in the near-flat space limit for AdS5 × Lp,q,r are

t = kt
√
g σ+ +

τ√
g
, ρ =

z√
g
,

ψ = kψ
√
g σ+ +

Kψ χ

K
√
g

+ c0 ϕ1 , (B.30)

φ = kφ
√
g σ+ +

Kφ χ

K
√
g

+ a0 ϕ1 + ϕ2 , θ =

(
α

α− x0

) 1

2 r1√
g
,

γ = kγ
√
g σ+ +

Kβ χ

K
√
g

+ b0 ϕ1 , x = x0 +
∆′

0

α− x0

r22
g
,

where K = Kψ + (1 − x0/β)Kγ . The finiteness of the Polyakov action in the limit g → ∞
provides two equations, whose solution is

kψ =

(
1 − β − x0

β
b0

)
kΨ , kφ =

(
− 1 + a0

)
kΨ , kγ = b0 kΨ , (B.31)

where

kΨ = kψ +
β − x0

β
kγ (B.32)

6Here we correct a misprint in eq. (4.3) of [31].
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is a free parameter. These expressions lead to the form (3.5) for the Polyakov action.

Concerning the Virasoro constraints, the expansion of T−− at large g is given by (4.47),

just using (B.30), as expected from the general discussion of section 4.3. Instead, choosing

kt = kΨ, the expansion of T++ becomes (3.7) also for the Lp,q,r metrics.

Thus, also these results for the near-flat space limit have been obtained without making

use of the explicit expression for ∆x, but only assuming that ∆x|x0
= 0 and ∆′

x|x0
6= 0.

For completeness, the function ∆x which makes (B.22) an Einstein manifold (i.e. with

Rab = (4/R2)gab) is [21]

∆x = x(α− x)(β − x) − µ , (B.33)

where µ is a parameter that can be set to any nonzero value by rescaling x, α and β. The

round sphere S5 corresponds to µ = 0.
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